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A mathematical model for a thermodynamically active wind turbine was presented 
in the author’s previous papers, “A Fundamental Revision of Wind Turbine Design Theory” 
and “Corrected Momentum and Energy Equations Disprove Betz’s Limit.” This paper expands 
on their fundamental concept, the intent of which was to correct the conventional wind turbine 
momentum theory which diverges from real flow and to correct the improperly used energy 
equation which ignores thermal energy and infers false limitations on wind turbine 
performance. The basis for this new theory is the corrected momentum and energy equations, 
along with the fundamental realization that the product of axial force normal to the turbine 
disc times the axial velocity should not be directly equated to the power extraction of a rotating 
turbine. In this paper it is mathematically shown how this term is representative of the power 
available but manifests itself as a shift in the internal energy of the flow field and is not 
necessarily the source of the energy extracted. This concept is contrary to conventional 
theories. A new relationship is derived for efficiency of the wind turbine which determines 
how much of this available power can be extracted by the system and it is shown how to 
increase both the available energy and the energy extracted.  
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Nomenclature 
 

A = area 
a = axial induction factor, a = (V1-V2)/ V1= (1- ai) 
ai = inflow velocity ratio, ai = V2/ V1 = (1-a)  
as = spinner acceleration factor, as = V2.5/ V2  
b = axial slipstream factor, b = (V1-V6)/ V1 
bi = outflow velocity ratio, bi = V6/V1 = (1-b) 
Cp = power coefficient  
cp = specific heat at constant pressure 
cv = specific heat at constant volume 
e = energy per unit mass 
D = drag force acting on airfoil parallel to relative flow 
h = enthalpy per unit mass 
K = ratio of change in enthalpy to ke 
k = specific heat ratio vp cc  
F = force 
ke = kinetic energy per unit mass  
L = lift force acting on airfoil perpendicular to relative flow 
M = momentum 
m  = mass flow VAm   
P = power  
p = pressure 
q = dynamic pressure q=ρV2/2 
R = maximum radius or gas constant in equation of state 
r = local or relative radius of blade element 
T = thrust or temperature 
V = velocity, with subscript defining location 
W = work 
α = angle of attack of an airfoil 
δ = angle between the resultant and normal blade forces 
θ = pitch angle of blade airfoil  
ϕ = relative flow angle from rotor disc 
λ = tip speed ratio, λ = ΩR/V1,  λR may also be used 
λr = local speed ratio, λr = Ωr/V1 
λs = slipstream speed ratio, λs = ωr/V1 

λS = slipstream outer speed ratio, λS = ωR/V1 

 = density 
τ = torque 
Ω = angular velocity of turbine  
ω = angular velocity of slipstream 
 
Subscripts 
rel = relative 
n = normal to turbine disc 
r = with respect to an annular element located at radius r 
s = shifting with respect to energy or spinner with respect to radius 
θ = with respect to the direction of rotation, tangentially 
R = resultant when referring to force vectors  
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I. Introduction 
In this paper I will elaborate on the thermodynamic wind turbine model. The basis for this new theory is the 

corrected forms of the momentum and energy equations along with the new fundamental concept that the axial force 
normal to the turbine disc, the thrust force times velocity, should not be equated to the power extraction of a rotating 
turbine.  In this paper it will be demonstrated how this term FnV2 is representative not of power output but of power 
available that manifests itself as a shift in the internal energy of the flow but is not the source of the energy extracted. 
The implication from this leads to the derivation of an equation for the efficiency of a wind turbine which determines 
how much of the available energy can be extracted. New equations are developed for the power coefficient Cp as a 
function of this new efficiency factor and as a function of a new accelerated flow factor.  It will further be shown how 
to increase both the available energy and the energy extracted. New equations for optimization of wind turbine 
performance are derived and suggest that a return to multi-bladed designs with constrained accelerated airflow could 
achieve performance gains previously thought to be unattainable. This is made possible with the understanding of the 
thermodynamically active wind turbine. This paper does not stand alone but is based on and requires referencing to 
one or the other of the previous papers, A Fundamental Revision of Wind Turbine Design Theory1 and Corrected 
Momentum and Energy Equations Disprove Betz’s Limit.2   

 

II. The Thermodynamic Wind Turbine Model Continued 
In the previous papers a realistic hypothetical case study was carried out for a small scale wind turbine. The 

study was completed for both a free-spinning wind turbine with no energy extraction and for a turbine with a power 
coefficient, Cp equal to 0.40. The parameter details and the results of the analysis are repeated on the following page 
along with Fig. 1 which identifies the station positions. 

 
 

 

Figure 1.  Station Positions 
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Summary of Sample Case Study Results (Corrected revision 2015-10-18 LM) 
 

Given Parameters 
Diameter 6 ft, R = 3 ft  V∞ = 30 ft/s 
Area = 28.27 ft2  p∞ = 2116.2 lb/ft2 

Cp = 0.40   ∞ = 0.002378 slug/ft3 
a = 1/3, ai=2/3  λR = 6 
 
Constants  
cp = 6007.79 ft2/s2/°R  R = (cp - cv) = 1716.51 ft2/s2/°R 
cv = 4291.28 ft2/s2/°R  k = cp / cv = 1.40000 
 
Calculated Results 
݉̇ = 1.334478 slug/s   q = 1.0701 lb/ft2 
eout = 270 ft2/s2   CT = 0.911338 

 
T1 = 518.440°R 
p1 = 2116.20 lb/ft2 

1 = 0.002378 slug/ft3 

V1 = 30 ft/s 
h01 = 3115128.6 ft2/s2 

 
T2 = 518.4816°R 
p2 = 2116.7944 lb/ft2 

2 = 0.00237848 slug/ft3 

V2 = 20.00 ft/s 
h02 = 3115128.6 ft2/s2 

 
Energy Extracting   Free-Spinning 
T3 = 518.4363°R  T3 = 518.4816°R 
p3 = 2115.8192 lb/ft2  p3 = 2115.8192 lb/ft2 

3 = 0.00237759 slug/ft3 3 = 0.00237738 slug/ft3 

V3 = 20.00 ft/s  V3 = 20.00 ft/s 
h03 = 3114858.6 ft2/s2  h03 = 3115128.6 ft2/s2 

 
Energy Extracting  Free-Spinning 
T4 = 518.4411°R   T4 = 518.4864°R 
p4 = 2116.20 lb/ft2  p4 = 2116.2 lb/ft2 

4 = 0.00237800 slug/ft3 4 = 0.00237779 slug/ft3 

V4 = 18.5 ft/s   V4 = 18.44 ft/s 
h04 = 3114858.6 ft2/s2  h04 = 3115128.6 ft2/s2 

 
Energy Extracting  Free-Spinning 
T5 = 518.4363°R  T5 = 518.4816°R 
p5 = 2116.4386 lb/ft2  p5 = 2116.4377 lb/ft2 

5 = 0.00237829 slug/ft3 5 = 0.00237808slug/ft3 

V5 = 20.00 ft/s   V5 = 20.00 ft/s 
h05 = 3114858.6 ft2/s2   h05 = 3115128.6 ft2/s2 

 
Energy Extracting  Free-Spinning 
T6 = 518.4196°R  T6 = 518.4650°R 
p6 = 2116.2 lb/ft2  p6 = 2116.2 lb/ft2 

6 = 0.00237809 slug/ft3 6 = 0.00237789 slug/ft3 

V6 = 24.4949 ft/s  V6 = 24.4949 ft/s 
h06 = 3114858.6 ft2/s2  h06 = 3115128.6 ft2/s2 
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Note that in the results, although the power coefficient Cp was defined as 0.40, the actual ratio of the reduction 
in the kinetic energy of the flow is only equal to 0.33. The additional 6.7% of relative power extracted is the result of 
the extraction of internal thermal energy as explained in the previous papers. The reduction in kinetic energy relative 
to the free stream can be calculated as follows: 
 

ଵܸ
ଶ − ଺ܸ

ଶ

ଵܸ
ଶ = 1 − ܾ௜ଶ = 1− ܽ௜ = ܽ	, (1) 

 
where ai and bi are the inflow and outflow velocity ratios as previously defined1, 2 and a is the axial induction factor. 
Note that by this definition and for non-accelerated flow, the ratio of the reduction in kinetic energy is also equal to 
the ratio in reduction in mass flow which is equal to the axial induction factor and none of these terms is necessarily 
a function of the power extracted. As can be seen in the previous results, whether free-spinning or power-generating, 
both cases have the same reduction in kinetic energy of 33%. Although neither axial induction factor nor inflow 
velocity ratio can be independently related to power extraction, they can be related directly to turbine thrust in the 
following laminar wake momentum equation.1,2 

 
ܽ௜ = ܾ௜ଶ = (1 − ଶ(்ܥ0.5 ଷൗ  (2) 

 
Summarizing, the reduction in kinetic energy, the turbine wake profile and the mass flow rate all are strictly 

functions of the turbine thrust but not of the energy extraction. The foundation of conventional theory relies heavily 
on the misconception that the product of the turbine thrust times the velocity through the turbine FnV2 can be equated 
directly to the power extracted. This appears to work in conventional theory; in actuality it works only as an estimation 
for a very narrow region of flow and it causes a misinterpretation of flow parameters for most cases. 
 Let us look at this closer with the new theory in the Sample Case Study. The pressure drop across the turbine 
was shown in Eq. (58) of Ref. 2 to be equal to -qCT. If we solve for CT from Eq. (2), the result is 
 

ଶ,ଷ݌∆ = ݍ2 ൬1 − ܽ௜
ଷ
ଶൗ ൰. (3) 

 
For the conditions in the Sample Case, -qCT yields (1.07)(-0.9113)= -0.9752 lb/ft2.  We can now solve 
 
 

௡ܨ =  . (4)	ଶܣଶ,ଷ݌∆
  

Fn = (-0.9752 lb/ft2)(28.27 ft2) = 27.57 lb.  
 
We can now calculate FnV2 = (27.57 lb)(20.0 ft/s) = 551.4 ftlb/s.  Dividing this by the mass flow rate of 1.345 slug/s 
equals 410.0 ft2/s2 per unit mass flow. The energy extracted was previously calculated at 270 ft2/s2 per unit mass flow. 
This is obviously nowhere close to the work being done by the rotor in the axial direction and the difference is 
significantly higher than any losses due to drag. So where is this axial work going to and what is its effect?  

III. Internal Energy Shift within the Turbine Flow Field 
In order to answer the above question I proceed with a detailed analysis of the movement or shifting of the 

internal energy within the turbine flow field. I define the internal energy shift es  as the absolute value of the quantity 
of energy which moves from kinetic energy to thermal energy or vice versa as it moves from one station to another. 

 
݁௦ = หܿ௣( ௜ܶ − ௜ܶାଵ)ห = |0.5( ௜ܸ

ଶ − ௜ܸାଵ
ଶ )| (5) 

 
The theorem here is that the total energy shift that occurs, which is equal to the sum of the absolute values of 

the individual station shifts, will equate to the axial term FnV2 as shown in Eq. (6). 
 

Σ	݁௦ =
௡ܨ ଶܸ

݉̇ 	. (6) 
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Four distinct regions of flow were defined in the previous papers; stations (1-2), (3-4), (4-5), and (5-6). 
Using the results summarized on page 4, we will calculate ݁௦ for each region of flow.  

 
݁௦(ଵିଶ) = |0.5( ଵܸ

ଶ − ଶܸ
ଶ)| = |0.5(302-202)| = 250.0 ft2/s2 

 
݁௦(ଷିସ) = |0.5( ଷܸ

ଶ − ସܸ
ଶ)| = |0.5(202-18.52)| = 28.88 ft2/s2 

 
݁௦(ସିହ) = |0.5( ସܸ

ଶ − ହܸ
ଶ)| = |0.5(18.52-202)| = 28.88 ft2/s2 

 
݁௦(ହି଺) = |0.5( ହܸ

ଶ − ଺ܸ
ଶ)| = |0.5(202-24.492)| = 100.0 ft2/s2 

 
Summing the results gives us Σ	݁௦ = 407.76 ft2/s2 which is within one percent of 410.0 ft2/s2 the value for 
௡ܨ ଶܸ ݉̇⁄  which was calculated at the turbine disc. This result supports the theorem which I put forth. 
 The above calculations demonstrate that the axial work occurring at the turbine disc is clearly work which 
the airflow performs on itself with the effect of shifting the kinetic energy of the flow to internal energy and back 
depending on the flow field profile it has created. The work must be distributed throughout the pressure distribution 
within the flow field which alternately deaccelerates and reaccelerates the airstream altering its profile. The only work 
acting on the turbine which results in energy extraction is	߬Ω, torque times angular velocity. This should make 
immediate sense when one considers that there is no axial movement of any turbine components and therefore no 
work is done to the turbine by the normal force. Examining a free-spinning turbine supports these conclusions. In 
common with the free-spinning turbine are the auto-gyrocopter and the auto-rotating helicopter. Both of these vehicles 
in gliding flight experience a steady force times velocity reacting with the free stream, but neither transfer any power 
back into their rotating shafts.  

On a side note, the solution for the internal energy shift reveals an alternative method for estimating V4 and 
the other thermodynamic parameters at station 4. This was defined as the location of maximum wake expansion within 
the region of non-isentropic flow. The original derivation for V4 assumed ݌ସ =  ஶ which may not be the case. But the݌
kinetic energy shift between stations 3 and 5 must be split equally by station 4 implying	݁௦	(ଷିସ) = ݁௦	(ସିହ)	. Therefore, 
we observe the following from above: 

 
 

௡ܨ ଶܸ

݉̇ = ݁௦	(ଵିଶ) + ݁௦	(ଷିସ) + ݁௦	(ସିହ) + ݁௦	(ହି଺) (7) 

 

݁௦	(ଷିସ) =
1
2
൬
௡ܨ ଶܸ

݉̇ − ݁௦	(ଵିଶ) − ݁௦	(ହି଺)൰ =
1
2

( ଷܸ
ଶ − ସܸ

ଶ) (8) 

 

ସܸ = ඨ ଷܸ
ଶ −

௡ܨ ଶܸ

݉̇ + ݁௦	(ଵିଶ) + ݁௦	(ହି଺)	. (9) 

 
When we plug values for the Sample Case Study into Eq. (9) we get the following result: 
 

ସܸ = √20ଶ − 410 + 250 + 100 = 18.44 ft/s . 
 

This energy shift solution for V4 is probably more accurate than the original thermodynamic solution which assumed 
ସ݌	 =  ஶ. We can now return to the non-isentropic wake solution, from Eqs. (59) and (60) of Ref. 2, and using the݌
new value for V4 we can solve for the corrected value of p4.  
 

ସ݌ = ൬ ସܸ

ଶܸ
൰ ቈ

1
2

ଷ݌) + ହ݌ − (ஶ݌2 − ݉̇	
( ସܸ − ଶܸ)

ଶܣ
቉ +  ஶ (10)݌

 

ସ݌ =
18.44
20.00

ቈ
1
2
൫2115.8192 + 2116.4386 − 2(2116.20)൯ − 1.3345

(18.44 − 20.00)
28.27

቉ + 2116.2 = 2116.2023 
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This solution agrees with the original assumption	݌ସ ≈  .ஶ; although, the new solution for V4 will be the more accurate݌
Ignored in the derivations was any account for the radial momentum of the flow which will probably cause slightly 
more expansion. These corrected values of V4 and p4 will have negligible results on the final thermodynamic 
parameters previously calculated. The corrected values for both cases are re-graphed in the following Fig. 2. 
 
 
 

 
Figure 2.  Station Thermodynamic Parameters 

Red, free-spinning; Blue, energy extracting 
 

  

R (ft) 

Δρ (lb/ft2) 

V(ft/s) 

ΔT (°F) 

-0.004 

+0.042 

20.0 

-0.381 

0.594 
0.237 

18.44 20.0 

+.0464 

+0.001 

24.49 

-0.020 

+0.025 

2.45 
3.00 

3.12 
2.71 
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IV. The Force and Velocity Triangles Re-examined with Power 
I will now return to blade element theory so we can better understand the mechanics which cause this paradox 

between the energy represented by FnV2 and actual energy extracted. Blade element theories start with a typical 
drawing depicting the forces and relative velocities acting on an airfoil section of the turbine blade. For details of 
conventional theory refer to Ref. 3 and Ref. 4. For now I will simplify the rotation into a linear blade actuation, such 
as considering a cascade of land sailers moving perpendicular to the wind. This would very closely represent the 
condition in an outer annular element of the multi-bladed wind turbine proposed by this theory. For this discussion 
refer to the following Fig. 3:  
 

 
Figure 3.  Blade Element, Force and Velocity Triangles 

 
Note also in Fig. 3 I have defined a new angle δ, which is the angle between the resultant force created by the airfoil 
and the normal component of the force. Based on trigonometric relationships of Fig. 3, the following can be 
determined: 
 

ఏܨ = ߶	ݏ݋ܿܦ) −  (11) 	(߶	݊݅ݏܮ
 

௡ܨ = ߶	ݏ݋ܿܮ) +  (12) (߶	݊݅ݏܦ
 

ோܨ = ඥܨఏଶ + ଶܮ√	= ௡ଶܨ  ଶ (13)ܦ+
 

sin߶ = ଶܸ

௥ܸ௘௟
		 , cos߶ = ఏܸ

௥ܸ௘௟
=
Ωݎ
௥ܸ௘௟
	 , ௥ܸ௘௟ =	ට ଶܸ

ଶ + ఏܸ
ଶ			 (14) 

 
ߜ = ߶ − ݊ܽݐܿݎܽ ቀ஽

௅
ቁ . (15) 

 
 
 
 
 



9 
 

Power, P or ܹ̇, can be defined as force times velocity yielding: 
 

	݊݅	ݎ݁ݓ݋ܲ = ܹ̇௜௡ ௡ܨ	= ଶܸ ோܨ	= ௥ܸ௘௟ cosߜ sin߶ (16) 
 

ݐݑ݋	ݎ݁ݓ݋ܲ = ܹ̇௢௨௧ = τ	Ω = ఏܨ ఏܸ = ோܨ ௥ܸ௘௟ sin ߜ cos߶ . (17) 
 
From this relationship it can be clearly seen that the term FnV2  is not equivalent to power out. Looking closer we 
can insert relationships Eqs. (11) - (15) from above and arrive at the following: 
 

݊݅	ݎ݁ݓ݋ܲ = ௡ܨ ଶܸ =		ඥܮଶ ݎΩ	ଶܦ+ sin൬߶ − ݊ܽݐܿݎܽ
ܦ
ܮ
൰ (18) 

 
ݐݑ݋	ݎ݁ݓ݋ܲ = ఏܨ ఏܸ ଶܮ√		= + 	ଶܦ ଶܸ cos ቀ߶ − ݊ܽݐܿݎܽ ஽

௅
ቁ . (19) 

 
Recalling sine and cosine addition formulas of 
 

sin(ܽ − ܾ) = sin ܽ cosܾ − cos ܽ sin ܾ (20) 
and 

cos(ܽ − ܾ) = cosܽ cosܾ + sin ܽ sinܾ (21) 
 
along with previous relationships, we can simplify the terms to 
 

݊݅	ݎ݁ݓ݋ܲ = ௡ܨ	 ଶܸ = ଶܸΩܮݎ + ଶܸ
ଶܦ

௥ܸ௘௟
 (22) 

and 

ݐݑ݋	ݎ݁ݓ݋ܲ = ఏܨ ఏܸ =	 ଶܸΩܮݎ − (Ωݎ)ଶܦ
௥ܸ௘௟

	. (23) 

 
The temptation here is to ignore drag and come to the conclusion that FnV2 = FθVθ. This was a paradox for me, at first, 
because it would not allow for or explain the conditions of the free-spinning turbine. We know if the turbine is free-
spinning with no torque then FθVθ must = 0. Setting Power out = 0 for the free-spinning case gives us 
 

ଶܸΩܮݎ − (Ωݎ)ଶܦ
௥ܸ௘௟

= 0 (24) 

 
ଶܸΩܮݎ = (Ωݎ)ଶ(25) ܦ 

 
௥ߣ
ܽ௜

=
ܮ
 .		ܦ

(26) 

 
Inserting Eq. (25) into Eq. (22) for the free-spinning case yields: 
 

௡ܨ ଶܸ =
((Ωݎ)ଶ + ଶܸ

ଶ)ܦ
௥ܸ௘௟

= ܦ ௥ܸ௘௟ ≠ ఏܨ ఏܸ = 0	. (27) 

 
For the free-spinning case, drag is not necessarily equal to zero but is defined in relationship Eq. (26). The point here 
again is that FnV2 cannot be directly equated to power out.  
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The thermodynamic model shows FnV2 to be related to the internal energy shift, not power out, and yet there 
is a trigonometric connection between FnV2 and FθVθ which we are examining.  But even in the absence of drag, FnV2 
and FθVθ cannot be equated as can readily be seen for the free-spinning case: 

 

݊݅	ݎ݁ݓ݋ܲ = ௡ܨ	 ଶܸ ≈
ଶܸΩܮݎ
௥ܸ௘௟

	 (28) 

 
ݐݑ݋	ݎ݁ݓ݋ܲ = ఏܨ ఏܸ = 	0	. (29) 

 

V. Understanding the Efficiency of a Wind Turbine 
We can learn something from looking at a corollary between the efficiency of a propeller versus a wind 

turbine. In terms of horse power hp, a propeller’s efficiency is often defined as 
 

௉ߟ =
ݐݑ݋	ݎ݁ݓ݋ܲ
݊݅	ݎ݁ݓ݋ܲ =

ܶℎݐݏݑݎ	ℎ݌
ܵℎ݂ܽݐ	ℎ݌ =

௡ܨ ଶܸ

߬Ω 		. (30) 

 
We could similarly define wind turbine efficiency as the inverse:  
 

்ߟ =
ݐݑ݋	ݎ݁ݓ݋ܲ
݊݅	ݎ݁ݓ݋ܲ =

ܵℎ݂ܽݐ	ℎ݌
ܶℎݐݏݑݎ	ℎ݌ =

߬Ω
௡ܨ ଶܸ

		. (31) 

 
Using this definition for the efficiency of a wind turbine, we can further derive from Eqs. (22) and (23): 
 

்ߟ =
ݐݑ݋	ݎ݁ݓ݋ܲ
݊݅	ݎ݁ݓ݋ܲ =

ఏܨ ఏܸ

௡ܨ ଶܸ
= ଶܸΩܮݎ − (Ωݎ)ଶܦ

ଶܸΩܮݎ + ଶܸ
ଶܦ 		. (32) 

 
Dividing Eq. (32) through by ଵܸ

ଶ and D yields: 

்ߟ =
ܽ௜ߣ௥ ቀ

ܮ
ቁܦ − ௥ଶߣ

ܽ௜ߣ௥ ቀ
ܮ
ቁܦ + ܽ௜ଶ

			. (33) 

 
Dividing Eq. (33) by ܽ௜ଶ, factoring and further simplifying yields: 
 

்ߟ =

௥ߣ
ܽ௜
ቀܦܮ −

௥ߣ
ܽ௜
ቁ

௥ߣ
ܽ௜
ቀܦܮቁ + 1

		. (34) 

Dividing Eq. (34) by λr/ai yields: 

்ߟ =	

ܮ
ܦ −

௥ߣ
ܽ௜

ܮ
ܦ + ܽ௜

௥ߣ

		. (35) 

 
I present this Eq. (35) as the fundamental equation for the efficiency of an annular element of a wind turbine for 
extracting available power from the wind, where the available power, synonymous with power in, is defined as FnV2 .  
Notice that if ܮ ⁄ܦ = ௥ߣ ܽ௜⁄ , then the efficiency for extracting power goes to zero as is the case for the free-spinning 
turbine. Equation (35) is plotted with respect to λr/ai and L/D ratio in Fig. 4. 
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Figure 4.  Annular Blade Element Efficiency 

 
Also note from Fig. 4 and Eq. (35) that efficiency peaks at ߣ௥ ܽ௜⁄ ~1 which implies tan߶~1 or in other words the 
optimum flow angle would be approximately 45 degrees. 
 The above relationship for efficiency should not be confused with power coefficient	ܥ௉. By convention, ܥ௉	is 
defined as the power extracted divided by the theoretical kinetic energy contained in the airflow. 
 

௉ܥ =
ݐݑ݋	ݎ݁ݓ݋ܲ
ݍ ଵܸܣଶ

 (36) 

 
From Eqs. (31) or (32),  

ݐݑ݋	ݎ݁ݓ݋ܲ ௡ܨ்ߟ	= ଶܸ	. (37) 
 
So ܥ௉	 can be redefined as  

௉ܥ =
௡ܨ்ߟ ଶܸ

ݍ ଵܸܣଶ
= ்ܥ௜்ܽߟ 	. (38) 

 
Furthermore, ்ܥ can be defined from Eq. (2) as, 
 

்ܥ = 2൫1 − ܽ௜ଵ.ହ൯	. (39) 
 
Inserting Eq. (39) into Eq. (38) gives us a new relationship for ܥ௉	of 
 

௉ܥ = 2ܽ௜൫1்ߟ − ܽ௜ଵ.ହ൯	. (40) 
 
Although efficiency is also a function of ߣ௥/ܽ௜ , it is independent of power available and approaches unity for high 
L/D ratios. Therefore, we can approximately maximize the ܥ௉	equation by taking the derivative with respect to ܽ௜ and 
setting equal to zero while holding ்ߟ  constant.   
 

௉ܥ݀
݀ܽ௜

= ൫2்ߟ − 5ܽ௜ଵ.ହ൯ = 0 (41) 

 
Solving Eq. (41) yields an optimum of  
 

ܽ௜ ≈ 0.543		and		ܥ௉௠௔௫ ≈ ்ߟ0.651 	. (42) 
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This result is of major importance; that is, the realization that for unconstrained flow the optimum inflow velocity 
ratio should be ܽ௜ ≈ 0.543 or an axial induction factor ܽ ≈ 0.457, not the a value of one third that conventional design 
theory insists. This is apparent in Fig. 5 which compares the ܥ௉	equations of the conventional Betz theory with the 
Mansberger Blade Element Theory at optimum efficiency for both. 
 

 
 

Figure 5.  Cp Theory Comparison 
 
These new values for ܽ௜ and ܽ should be fairly accurate for most performance optimization. Notice by inserting the 
conventionally accepted optimum ai = 2/3 into Eq. (40) yields a maximum value in approximate agreement with Betz’s 
theory. In fact, the two theories almost parallel each other up to this point. This explains why for so long the 
conventional theory has been producing reasonable results and yet at the same time is limiting the full potential of 
wind turbines. But this is the region of flow where the old momentum theory diverges from reality and the new theory 
accurately predicts the flow. The result is not only a higher ܥ௉	value, but as can be seen from Fig. 5 there is a much 
broader region of power generation capability just beyond the intersection where we have been designing the modern 
three bladed wind turbine. This is a region of the power equation just waiting to be taken advantage of by four and 
five bladed wind turbine designs. I will go as far as to predict in the very near future the major industry players will 
move to manufacturing five bladed designs to take advantage of this region of the new power curve. But as I will 
show, their efforts will still be underutilizing the total wind resource available. 

VI. Extracting More Power from the Wind 
If our desire is to extract more thrust power from an aircraft powerplant, then looking at the equation 

ܶℎݐݏݑݎ	ℎ݌ = ௉ߟ	 ∙ ܵℎ݂ܽݐ	ℎ݌, we must either increase the efficiency or increase the shaft horse power of the aircraft 
powerplant. If our desire is to extract more power from the wind, then looking at the equation ܵℎ݂ܽݐ	ℎ݌ = 	்ߟ ∙
ܶℎݐݏݑݎ	ℎ݌ we must either increase the efficiency or the available thrust horse power reacting with turbine or in other 
words increase ܨ௡ ଶܸ. We cannot increase Fn without adversely affecting mass flow, but we can reduce the flow area 
increasing V2.5 while holding a constant Fn. This brings us back to the accelerated flow concepts discussed in Ref. 1. 
By installing a large diameter spinner of radius rs and outer flow control ring it is demonstrated that V2 can be increased 
to V2.5.  Equation (79) from Ref. 1 reads 

 

ଶܸ.ହ = ଶܸ

1 − ቀݎ௦ܴቁ
ଶ		. (43) 
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We can alternately define a new term for spinner acceleration factor for constrained flow as . 
 

ܽ௦ =
1

1 − ቀݎ௦ܴቁ
ଶ (44) 

Equation (44) into Eq. (43) yields:  
ଶܸ.ହ = ܽ௦ ଶܸ	. (45) 

 
This velocity increase simultaneously increases the kinetic energy and power available within the flow field, dropping 
the temperatures and increasing the efficiency of the system due to improved flow angles at the rotor. This new velocity 
term can be used to derive a new efficiency term for constrained flow with a spinner. 
 

௦்ߟ =	

ܮ
ܦ −

௥ߣ
ܽ௜ܽ௦

ܮ
ܦ + ܽ௜ܽ௦

௥ߣ

 (46) 

 
From Eq. (46) it can be shown that efficiency goes up with spinner ratio and spinner acceleration factor. 
Simultaneously, this makes the new power available term equal to ܨ௡ ଶܸ.ହ and we can conclude a new equation for 
power coefficient of: 
 

௉ܥ =
−௦2ܽ௜൫1்ߟ ܽ௜ଵ.ହ൯

1 − ቀݎ௦ܴቁ
ଶ = −௦2ܽ௜ܽ௦൫1்ߟ ܽ௜ଵ.ହ൯	. (47) 

 
If we insert Eq. (44) and Eq. (46) into Eq. (47) the equation appears as: 
 

௉ܥ = ൮
ܽ௦ ቀ

ܮ
ቁܦ −

௥ߣ
ܽ௜

ܮ
ܦ + ܽ௦ܽ௜

௥ߣ

൲2ܽ௜൫1 − ܽ௜ଵ.ହ൯	. (48) 

 
Equations (47) and (48) are the newly derived equations for power coefficient which can be used for the design of the 
next generation of accelerated flow, thermodynamically active wind turbines.  

Keep in mind that these equations do not account for the fact that ai and L/D are functions of both λr and θ. 
None of these should actually be considered independent variables.  That said, as an example for a spinner ratio of 
0.65 and L/D=80, we can plot ܥ௉		with respect to local speed ratio and inflow velocity ratio as shown in Fig. 6.  

 

 
Figure 6.  Cp for Spinner ratio =0.65 and L/D=80 
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The power coefficient in this example would not only exceed Betz’s limit, but in addition shows the potential for  
	௉ܥ > 1, remembering it has been shown in this model that we can extract thermal energy as well as kinetic energy 
from the flow. 

Yet another way to consider this whole concept is to imagine we inserted our wind turbine into an infinitely 
long uniform diameter duct. If the duct was held at a constant pressure, we would have a case similar to a hydro-
turbine. Conservation of mass for the uniform duct maintains that the velocity of the flow never changes; therefore, 
the kinetic energy of the flow would remain constant. If the turbine is free-spinning within the pipe flow, this still 
creates a pressure drop that could be factored into a term typically defined as head loss.  In the energy extracting case, 
the power out and temperature change would be dependent on the internal rotation. Within the duct the turbine can 
extract energy more efficiently and since the kinetic energy cannot change, the energy extraction can only come from 
within the internal thermal energy manifested as a pressure and temperature drop. The next generation of wind turbines 
will tap into this internal thermal energy in a similar manner. 

VII. Conclusion 
The thermodynamic wind turbine model was further explored with new results derived. It was mathematically 

confirmed that the axial force normal to the turbine disc times the flow velocity FnV2 does not equate to power 
extracted. Rather, the term FnV2 is shown to be work acting on the flow stream itself, causing a shift back and forth 
within the total energy equation from kinetic energy to enthalpy along with associated changes in turbine wake profile. 
FnV2 , or in the case of accelerated flow FnV2.5 , can be related to the power available but these terms are not the source 
of the power extracted. The actual source of the power extracted will be a combination of enthalpy and kinetic energy 
terms from within the final total energy equation. The relationship between power available and power extracted is 
determined by an efficiency factor ்ߟ  which is a function of inflow velocity ratio ai, accelerated flow factor as, L/D, 
and local rotational speed ratio λr. New equations for power coefficients Cp are derived based on these newly presented 
factors. For free flow around a turbine, the result is ܥ௉ = 2ܽ௜൫1்ߟ − ܽ௜ଵ.ହ൯,	with  the fundamental result that the 
optimum value for inflow velocity ratio is shown to be 0.543 or an axial induction factor of 0.457, not the 
conventionally accepted 1/3. This strongly suggests significant performance gains can be achieved from reconfiguring 
current designs along with the implementation of 4 and 5 bladed turbine configurations. For constrained flow it is 
shown that ܥ௉ = ௦2ܽ௜ܽ௦൫1்ߟ − ܽ௜ଵ.ହ൯ and that Cp values greater than one are theoretically possible. With this 
understanding, I predict an even greater potential for increasing power extraction will be found in constrained, 
accelerated-flow multi-bladed wind turbines. 
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